Neural Networks and

Categorization

Ecole Centrale de Nantes

october-november 2011

Pierre Andry
Université Cergy-Pontoise
andry@ensea.fr
ETIS UMR CNRS 8051

Global introduction

Traditional opposition : classical IA / connectionism

Global introduction

Traditional opposition: classical IA / connectionism

Logics (inference, deduction, etc...)
Reasoning
Symbol manipulation
Solution discovery
Rules (rules based system, expert systems)
Advanced Algorithmics
State space search (depth first, A^{*}, \ldots)

Global introduction

Traditional opposition: classical IA / connectionism

Logics (inference, deduction, etc...)
Reasoning
Symbol manipulation
Solution discovery
Rules (rules based system, expert systems)
Advanced Algorithmics
State space search (depth first, A^{*}, \ldots)

Global introduction

Traditional opposition : classical IA / connectionism

Logics (inference, deduction, etc...)

		"computers can be used to Reasoning manipulate symbols" [MCCarthy 60]
Symbol manipulation	"dialog with a computer ELIZA [Weiezbaum, 60]	

Solution discovery
Rules (rules based system, expert systems)
Advanced Algorithmics
State space search (depth first, A^{*}, \ldots)

Global introduction

Traditional opposition: classical IA / connectionism

Logics (inference, deduction, etc...)	
Reasoning	- Scripts language
Symbol manipulation	- PLANNER : goal generation for program solving
Solution discovery	- GPS [Newel \& Simon, 78]
Rules (rules based system, expert sys	tems)
Advanced Algorithmics	
State space search (depth first, A^{*}, \ldots)	

Global introduction

Traditional opposition: classical IA / connectionism

Logics (inference, deduction, etc...)
Reasoning
Symbol manipulation
Solution discovery
Rules (rules based system, expert systems)
Advanced Algorithmics
State space search (depth first, A^{*}, \ldots)

Global introduction

Traditional opposition : classical IA / connectionism

Achievements?

Global introduction

Traditional opposition : classical IA / connectionism

Achievement:

In 1997, Deep Blue super computer (IBM) beat world chess champion Gary Kasparov
... and Chess is one expression of intelligence (memory, symbol manipulation, adaptation...)

Global introduction

Traditional opposition : classical IA / connectionism

Global introduction

Traditional opposition : classical IA / connectionism

...but

Nao humanoid robot is still not able to compete with a 3 years-old child...

Global introduction

Traditional opposition : classical IA / connectionism

we are able to beat the chess world champion....
...but not to play elementary ball game such as football

Why?

Global introduction

Traditional opposition : classical IA / connectionism

Global introduction

Traditional opposition : classical IA / connectionism

Global introduction

Traditional opposition : classical IA / connectionism

perception
action
sensorimotor coordination
memory
fast decision making
adaptation ("on line")
prediction / anticipation
theory of mind? strategy?
collective?

Global introduction

Traditional opposition: classical IA / connectionism

We are successful when the system (a computer) manipulates symbols...
when the states are well defined
well identified
when the concepts are correctly framed
when the world is easily segmented
Chess is perfect for that

Global introduction

Traditional opposition : classical IA / connectionism

Global introduction

Traditional opposition : classical IA / connectionism

We fail when the system is immersed in the real world...
always changing
unpredictable
things, peoples, objects, concepts are undefined
noisy
A nightmare for Intelligent robotics
A. de Rengervé, J. Hirel, P Andry, M. Quoy, P. Gaussier -ETIS-Cergy [BioRob2011]

Global introduction

Traditional opposition : classical IA / connectionism

- To bypass that these issues, we need:
- to let the system adapt
- to let the system learn
- build its own categories
- to exploit the perception-action dynamics

Global introduction

Traditional opposition : classical IA / connectionism

- To bypass that these issues, we need:
- to let the system adapt
- to let the system learn
- build its own categories
- to exploit the perception-action dynamics

The brain does it well : connectionism

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :
- object (legs, 4) and object(back,1) and object (seat, 1)

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :
- (object (legs, 4) or (object (legs,3)) and object(back,1) and object (seat,1)...

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :

- (object (legs, 4) or (object (legs,3)) and object(back,1) and object (seat,1)...

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :

- (object (legs, 4) or (object (legs,3)) and object(back,1) and object (seat,1)...
- well...

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :

- (object (legs, 4) or (object (legs,3)) and object(back,1) and object (seat,1)...
- well...
- ..or (object, legs, 1)?

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :
- (object (legs, 4) or (object (legs,3)) and object(back,1) and object (seat,1)...
- well...
- ..or (object, legs, 1)?
- ..or 2 ?

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :
- (object (legs, 4) or (object (legs,3)) and object(back,1) and object (seat,1)...
- well...
- ..or (object, legs, 1)?
- ..or 2 ??

Global introduction

One more example : let's try to define an object : a chair

- Let's do it classical :

```
    - (objoct (logs,4)of (objoct (logs,3)) and
    object(back,1) and object (seat,1)...
    - well..
    - For (object,logs,1)?
    - .or 2??....?
    - ....?
```


Global introduction

If you want to recognize a chair, you need to :

- Build the experience of seating
- to categorize it
- you need to have legs
- you need to need to seat

Global introduction

If you want to recognize a chair, you need to :

- Build the experience of seating
- to categorize it
- you need to have legs
- you need to need to seat
- merge the perceptions, the motor actions
- to associate the objects vision with the whole

Global introduction

If you want to recognize a chair, you need to :

Global introduction

Connectionism is a part of this perception-action philosophy...
and neural networks is a tool to achieve such adaptive categorization

Overview

Introduction : from biology to the formal neuron

Part I : supervised learning

- perceptron
- simple rule
- Widrow Hoff rule
- limitations
- associative memories
- multi-layer perceptron
- backpropagation

Part II : unsupervised learning

- brain mechanisms
- competition and cooperation
- WTA
- Self Organizing Maps
- Kohonen maps
- K-means (analogy)
- Let's put it all together
- ART

From biology...

The brain is the main unit for information processing.
It is composed of 100 billions of nervous cells: the neurons

The neurons are connected in networks in order to :

- monitor
- regulate
- modulate
all the function of the organism.

Moreover : the "organ" of intelligence

From biology...

Cognition : all the mental processes involved in the scaffolding of our reality, et the basis of reasoning and all the high-level functions.

```
perception
memories
building categories
learning
inhibition
action selection
representations
```

Information processing : input -> evaluation->decision->action

From biology...

cortical areas

From biology...

Neuron : the main unit for information processing
Dendrit

Axon

Soma
Synapses

Electric information propagation
uni-directional
from one unit to the other

From biology...

A single neuron can be 1 m long
A single neuron can have up to 10000 connections with other ones (average of 1000 connections per neurons)

From biology...

But very slow

- If you measure the speed of information transmission, you get a rate of 300HZ
- $300 \mathrm{HZ}=$ frequency of the action potential : Spike train
- very slow, when compared to modern computer buses (circa 1GHZ)

From biology...

But...

- Multiple connections
- massive parallelism : continuous flow of information tat can be processed by multiples areas at the same time (asynchronous calculation - no main clock-)
- Adaptation : the synapse can adapt to modify the information intensity transmitted by a neuron to the other: learning

From biology...

comparison brain/ modern computer

Von Neumann Architecture	Brain
Computation and memory: separated and centralized	Computation and memory integrated and distributed
program = sequence of instructions	calculus = multiple constraints satisfaction
execution of one process at a time	permanent combination of multiples different information sources
1 to 8 very fast processors	hundreds of billions of slow connected units

...to information processing...

...to information processing...

At the basis any behavior, is information processing
2 different kinds :

- Chemical, long term (LT) "message sending" : hormones. chemical and not restricted to a given receptor, diffusion in all the body, transported by the blood. Slow process.
- Electro-chemical, short term, potential trains sent by neurons. "Fast"
- One neuron produces electrical potential changes, and the changes (the potential variation) are transmitted all along the membranes : emission of electrical signals
- The communication int the inter-neural space (between the synapse and the dendrite) is made by production of chemical substances, the neurotransmitters

...to information processing...

suppose you have a multimeter to measure the value of the electrical potential inside and outside the axon membrane

default resting potential (of the neuron): -66 mv : the inside of the axone is negatively charged (difference between a, b, c, and d, e)

...to information processing...

Suppose you plug an electrode and send a given voltage in the membrane of the axone...

...and you record the axon's membrane reaction at a given point

...to information processing...

- Stimuli under 10 or 15 mv : no significative response from the membrane

...to information processing...

- Depolarization >10 or 15 mv : strong reaction called action potential .
spike reaching +60 mv (C-D)
overshoot
whatever the stimulation is ($>15 \mathrm{mn}$), the spike is the same
stereotyped
followed by a short undershoot ($\mathrm{F}-\mathrm{G}$) during no new stimulation is possible: explain the 300 Hz limit

...to information processing...

- Depolarization >10 or 15 mv : strong reaction called action potential .

The spike will propagate all along the axon with
conservation of shape and amplitude
traveling electrical wave
$30 \mathrm{~m} / \mathrm{s}$

...to information processing...

- If the intensity of the trigger has no effect on the shape of the peak, it will nevertheless influence the amount of peaks generated.
- the stronger the stimulus is, the greater is the number of peaks (frequency max: 300hz)
- The axon is providing a frequency code for the intensity of the stimulus
- potential trains
- naturally, the trigger of the pikes potential will depend on the activity of the neuron's nucleus : the soma

...to information processing...

- The neuron's nucleus will act as an adder, summing the incoming potentials (arriving potentials from the dendrites).
- it is called the soma (soma = sum in latin)
- temporal en spatial sum according to :
- the synapses positions on the dendrite
- the frequency of the peaks
- The soma will trigger the axon if a given threshold is overshoot
- non-linearity : thresholds + saturation

...to information processing...

Formal neuron i
main processing unit
combined in networks
calculate the incoming potentials, the Xi $[-1,1]$:
summation in an internal potential Poti $[-1,1]$
Threshold $\theta[-1,1]$
deliver one output Yi [-1,1]
For our introduction we won't use the frequency coding : just a value expressing the mean number of emitted potential

McCulloc \& Pitts model [MacCullocs \& Pitts48]

See the works of Thorpe \& Al. for models of neurons coding the
frequency of the action potential : spiking neurons

...to a simple formal neuron

Formal neuron i

Formal neuron i

calculate the incoming potentials, the Xi $[-1,1]$:
summation in an internal potential Poti $[-1,1]$
Threshold [-1,1]
deliver one output Yi [-1,1]
we have seen that the information transmission between two neurons is made by emission of neurotransmitters.

Coefficient W $[-1,1]$ of the incoming potential

...to a simple formal neuron

Formal neuron i

Internal potential of neuron i : poti $=\sum$ wij.xj
activation of output: $\mathrm{Si}=\mathrm{f}$ (poti)
with f, the transfer function according to the model

For example :

identité

sigmoide

tadiale

identity function

$$
\begin{gathered}
f(x)=\left\{\begin{array}{l}
0 \text { si } x<\alpha \\
1 \text { si }>\beta \\
\text { x si } x \in[\alpha, \beta]
\end{array}\right. \\
\text { with } \theta=\beta-\alpha
\end{gathered}
$$

...to a simple formal neuron

Topology of the network?

example : vehicles

- Braitenberg's vehicles [Braitenberg80]
- You have to build a roomba robot that avoid obstacles.

example : vehicles

- Classical analysis:
if obstacle_detected == left
turn (angle_right)
if obstacle_detected $==$ right
turn (angle_left)
if obstacle_detected $==$ right\&left
else ...
obstacle is an important symbol
Difficult to recognize, frame, (remember the chair...)

example : vehicles

- normalize sensor activities [0,1024] -> [0,1]

example : vehicles

- build connection (weight $1 / 3$ to normalize) to the opposite motor.
- suppose the motor is activated by a neuron
- use identity transfer function

example : vehicles

- sensor saturation induce a diminution of the neuron potential : the opposite motor runs slower, the robot turn

example : vehicles

- Code : only simple operations: $\operatorname{pot}(\mathrm{i})=\mathrm{e} 1^{*} \mathrm{w} 1+\mathrm{e} 2 * \mathrm{w} 2+\mathrm{e} 3 * \mathrm{w} 3$

Senseur IR
moteur

example : vehicles

- Complete architecture:

\square Senseur IR

example : vehicles

- enhancement :

\square Senseur IR

example : vehicles

- only 2 neurons
- topology matters
- No "if", just a vector product : light calculation.
- No notion of obstacle
- behaviors can be stacked with more sensors :
- obstacle avoidance and phototaxis =
- stacking circuits

example : vehicles

example : vehicles

example : vehicles

fear

example : vehicles

fear

angry

example : vehicles

fear

angry

love

example : vehicles

fear

angry

love

exploration

Learning

Learning

- nervous circuits : also crucial for memory (no dedicated centralised structure).
- Observation : an informal experience is correlated to measurable neurochemical and neuro-anatomical modifications in the brain
- Physiological modification of synapses:
- Pré-synaptic : increase release of neurotransmitters
- Post-synaptic : increase sensitiveness of the receptive membrane
- Structural modifications :
- the frequent "use" of a circuit induce an increase of the synaptic contacts

Learning

Hebb Rule [Hebb 49] :
"when cell A excites by its axon cell B and, in a repeated and persistent manner, it triggers impulsion of B, a process of metabolic change happens in one or two of both cells, driving to an significant increase of the efficiency of A to generate an impulsion in B, among the other cells"

Learning

Hebb Rule [Hebb 49] :

Learning

Hebb Rule [Hebb 49] :

The sole A activity is not enough to induce B activation $A^{*} W_{B A}<\theta$ в

Learning

Hebb Rule [Hebb 49] :

Learning

Hebb Rule [Hebb 49] :

For some reason... coactivation of A and $B . .$.

Learning

Hebb Rule [Hebb 49] :

For some reason... coactivation of A and B...repeatedly increase of the connection WBA

Learning

Hebb Rule [Hebb 49] :

Learning

Hebb Rule [Hebb 49] :

The sole A activity is now enough ...

Learning

Hebb Rule [Hebb 49] :

The sole A activity is not enough to overshoot B threashold $A^{*} W_{B A}>\theta$ B

Learning

- Hebb rule

$$
\text { Wij }(\mathrm{t}+1)=\mathrm{wij}(\mathrm{t})+\mathrm{eps} . Y \mathrm{Y} . Y \mathrm{Yi}
$$

i.e:

$$
\Delta \mathrm{Wij}=\text { eps.Yj.Yi }
$$

with :
eps: learning speed

Learning

Overview

Introduction : from biology to the formal neuron

Part I : supervised learning

- perceptron
- simple rule
- Widrow Hoff rule
- limitations
- associative memories
- multi-layer perceptron
- backpropagation

Part II : unsupervised learning

- brain mechanisms
- competition and cooperation
- WTA
- Self Organizing Maps
- Kohonen maps
- K-means (analogy)
- Let's put it all together
- ART

Supervised learning

goal :
make the network learn to categorize inputs

- pattern recognition
- class separation
- method:
- train the network from different inputs
- test the network generalization

Supervised learning

goal :
make the network learn to categorize inputs

- pattern recognition
- class separation
method:
train the network from different inputs
- test the network generalization

Supervised learning

The network will learn

structural changes
modification of Wij in order to obtain the correct output
the expected result is a correct categorization
learning is iterative: not too fast, not too slow
learning rate epsilon
test the generalization

Supervised learning

How to guide the learning ?
fundamental notion of error
supervised : we expect a given answer
at each time step, we calculate the error
error : (desired ouput - output)
while there is an error: we change the weights

Supervised learning

Example

Supervised learning

Supervised learning

Datas

Supervised learning

Perceptron

Architecture

As input, the retina : raw numerical information

A first layer of neurons : one-one connections with the retina (normalization only)

A last layer, called decision layer : the output of the system.

Perceptron

Architecture

As input, the retina : raw numerical information

A first layer of neurons : one-one connections with the rétina (normalization only)

A last layer, called decision layer : the output of the system.

- non-modifiable weight. direct transmission, W=1/(raw-max)
- modifiable weights. learning !
- Wij= random between [-1/n,1/n]

Perceptron

Learning : the simple rule

$$
w_{i j}(t+i)=w_{i j}(t)+e p s .\left(Y d-Y_{i}\right) \cdot X_{j}
$$

Perceptron

Learning : the simple rule

Perceptron

Learning : the simple rule

Perceptron

Learning : the simple rule

$$
w_{i j}(t+i)=w_{i j}(t)+e p s .\left(\underline{Y_{d}-Y i}\right) . Y_{j}
$$

error

Perceptron

- logical AND

Perceptron

- logical OR

Perceptron

-XOR?

Perceptron

- limited to linear separation
- what to ?
- increase the number of layers ad combine the outputs

Perceptron

- limited to linear separation
- what to ?
- increase the number of layers ad combine the outputs

1 layer

2 layers

3 layers

