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Traditional opposition : classical IA / connectionism 

- Logics (inference, deduction, etc... )

- Reasoning

- Symbol manipulation

- Solution discovery

- Rules (rules based system, expert systems)

- Advanced Algorithmics

- State space search (depth first, A*, ...)

- A star [Hart & Al. 68]
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Traditional opposition : classical IA / connectionism 

- Achievement : 

In 1997, Deep Blue super computer (IBM) beat world chess champion Gary Kasparov

... and Chess is one expression of intelligence (memory, symbol manipulation, adaptation...)
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Traditional opposition : classical IA / connectionism 

- we are able to beat the chess world 
champion....

-   ...but not to play elementary ball game 
such as football

- Why ?
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Traditional opposition : classical IA / connectionism 

- perception

- action

- sensorimotor coordination

- memory

- fast decision making

- adaptation (“on line”)

- prediction / anticipation

- theory of mind ? strategy ? 

- collective ?

All simultaneously...

...with one brain
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Traditional opposition : classical IA / connectionism 

- We are successful when the system (a 
computer) manipulates symbols...

- when the states are well defined

- well identified

- when the concepts are correctly framed, 
formalised 

- when the world is easily segmented

- Chess is perfect for that



Global introduction

Traditional opposition : classical IA / connectionism 

- We fail when the system is immersed in the 
real world...

- always changing

- unpredictable

- things, peoples, objects, concepts are 
undefined

- noisy

- A nightmare for Intelligent robotics

A. de Rengervé, J. Hirel, P Andry, M. Quoy, P. Gaussier -ETIS-Cergy 
[BioRob2011]
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Traditional opposition : classical IA / connectionism 

- To bypass that these issues, we need : 

- to let the system adapt 

- to let the system learn

- build its own categories

- to exploit the perception-action dynamics

The brain does it well : connectionism 
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(one of the world most known chair : Eames rocking chair)
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One more example : let’s try to define an object : a chair

- Let’s do it classical :

- (object (legs, 4) or (object (legs,3)) and 
object(back,1) and object (seat,1)...

- well...

- ..or (object, legs, 1) ?

- ..or 2 ? .....?

- ....?
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Global introduction

If you want to recognize a chair, you need to : 

- Build the experience of seating

- to categorize it

- you need to have legs

- you need to need to seat

- merge the perceptions, the motor actions

- to associate the objects vision with the 
whole

- in order to generalize and recognize

visionmotor actions

propriception

motivations



Global introduction
Connectionism is a part of this perception-action philosophy...

and neural networks is a tool to achieve such adaptive 
categorization



Overview

Introduction : from biology to the formal neuron

Part I : supervised learning

- perceptron

- simple rule

- Widrow Hoff rule

- limitations

- associative memories

- multi-layer perceptron

- backpropagation

Part II : unsupervised learning

- brain mechanisms

- competition and cooperation

- WTA

- Self Organizing Maps

- Kohonen maps

- K-means (analogy)

- Let’s put it all together

- ART



From biology...
The brain is the main unit for information processing.

It is composed of 100 billions of nervous cells: the 
neurons

The neurons are connected in networks in order to :

- monitor

- regulate

- modulate

all the function of the organism.

Moreover : the “organ” of intelligence



From biology...

Cognition : all the mental processes involved in the 
scaffolding of our reality, et the basis of reasoning and 
all the high-level functions.

- perception

- memories

- building categories

- learning

- inhibition

- action selection

- representations

Information processing : input -> evaluation->decision->action



From biology...

visual areas

cortical areas

somesthesic

motor

PFC

hippocampus

basal ganglia

amygdalia



From biology...

- Dendrit

- Axon

- Soma

- Synapses

Neuron : the main unit for information processing

Electric information propagation

uni-directional

from one unit to the other



From biology...

A single neuron can be 1m long

A single neuron can have up to 10 000 connections with other ones

(average of 1000 connections per neurons)



From biology...

But very slow

- If you measure the speed of information transmission, you get a rate of 300HZ

- 300HZ = frequency of the action potential : Spike train

- very slow, when compared to modern computer buses (circa 1GHZ)



From biology...

But...

- Multiple connections

- massive parallelism : continuous flow of 
information tat can be processed by 
multiples areas at the same time 
(asynchronous calculation - no main clock-)

- Adaptation : the synapse can adapt to 
modify the information intensity transmitted 
by a neuron to the other: learning



From biology...

comparison brain/ modern computer

Von Neumann Architecture                            Brain

Computation and memory:                       Computation and memory

separated and centralized                         integrated and distributed

program = sequence                                 calculus = multiple constraints 

of instructions                                            satisfaction

execution  of one process                         permanent combination of 

at a time                                                     multiples different information sources

1 to 8 very fast processors                        hundreds of billions of slow connected units

t                                                 



...to information processing...



...to information processing...
At the basis any behavior, is information processing

2 different kinds :

- Chemical, long term (LT) “message sending” : hormones. chemical and not 
restricted to a given receptor, diffusion in all the body, transported by the 
blood. Slow process.

- Electro-chemical, short term, potential trains sent by neurons. “Fast”

- One neuron produces electrical potential changes, and the changes (the 
potential variation) are transmitted all along the membranes : emission of 
electrical signals

- The communication int the inter-neural space (between the synapse and 
the dendrite) is made by production of chemical substances, the 
neurotransmitters 



� suppose you have a multimeter to measure the value of the electrical 
potential inside and outside the axon membrane

� default resting potential (of the neuron): -66 mv : the inside of the axone 
is negatively charged (difference between a,b,c, and d, e )

...to information processing...



� Suppose you plug an electrode and send a given voltage in the 
membrane of the axone...

� ...and you record the axon’s membrane reaction at a given point 

...to information processing...



 Stimuli under 10 or 15mv : no significative response from the membrane 

...to information processing...



 Depolarization > 10 or 15 mv : strong reaction called  action potential .  

...to information processing...

- spike reaching +60mv (C-D)

- overshoot

- whatever the stimulation is 
(>15mn), the spike is the 
same

- stereotyped 

- followed by a short 
undershoot (F-G) during no 
new stimulation is possible: 
explain the 300Hz limit



 Depolarization > 10 or 15 mv : strong reaction called  action potential .  

...to information processing...

- The spike will propagate all 
along the axon with 
conservation of shape and 
amplitude

- traveling electrical wave

- 30 m/s



- If the intensity of the trigger has no effect on the shape of the peak, it will 
nevertheless influence the amount of peaks generated.

- the stronger the stimulus is, the greater is the number of peaks (frequency 
max : 300hz)

- The axon is providing a frequency code for the intensity of the stimulus

- potential trains

- naturally, the trigger of the pikes potential will depend on the activity of the 
neuron’s nucleus : the soma 

...to information processing...



- The neuron’s nucleus will act as an adder, summing the incoming 
potentials (arriving potentials from the dendrites).

- it is called the soma (soma = sum in latin)

- temporal en spatial sum according to :

- the synapses positions on the dendrite

- the frequency of the peaks

- The soma will trigger the axon if a given threshold is overshoot

- non-linearity : thresholds + saturation 

...to information processing...



...to information processing...



...to a simple formal neuron

Formal neuron  i

- main processing unit

- combined in networks 

- calculate the incoming potentials, the Xi [-1,1]:

-  summation in an internal potential Poti [-1,1] 

- Threshold θ [-1,1]

- deliver one output Yi [-1,1]

- For our introduction we won’t use the 
frequency coding : just a value expressing the 
mean number of emitted potential

- McCulloc & Pitts model [MacCullocs & Pitts48]

See the works of Thorpe & Al. for 
models of neurons coding the 
frequency of the action potential : 
spiking neurons



...to a simple formal neuron

Formal neuron  i

   f        θ    

x1

x2

xn

Wi1

Wi2

Win

Yi



...to a simple formal neuron

Formal neuron  i

- calculate the incoming potentials, the Xi [-1,1]:

-  summation in an internal potential Poti [-1,1] 

- Threshold [-1,1]

- deliver one output Yi [-1,1]

- we have seen that the information transmission 
between two neurons is made by emission of 
neurotransmitters. 

- Coefficient W [-1,1] of the incoming potential



...to a simple formal neuron

Formal neuron  i

- Internal potential of neuron i : poti = ∑ wij.xj

- activation of output : Si = f(poti)

- with f, the transfer function according to the 
model 

For example : 

identity function

f (x) =   ⎧  0 si x < α
             ⎨  1 si x > β

                    ⎩   x si x ∈ [α,β]

with θ = β-α



...to a simple formal neuron

Topology of the network ?



 Braitenberg’s vehicles [Braitenberg80]
 You have to build a roomba robot that avoid obstacles.

example : vehicles

- Sensors [0,1024] saturation 
when contact to obstacle

- motors : speed control [-1,1]



 Classical analysis:
if obstacle_detected == left 

 turn (angle_right) 
if obstacle_detected == right

turn (angle_left) 
 if obstacle_detected == right&left 

...
else ...

obstacle is an important symbol

Difficult to recognize, frame, (remember the chair...)

example : vehicles



 normalize sensor activities [0,1024] -> [0,1]

example : vehicles



 build connection (weight 1/3 to normalize) to the opposite motor.
 suppose the motor is activated by a neuron
 use identity transfer function

example : vehicles



 sensor saturation induce a diminution of the neuron potential : the 
opposite motor runs slower, the robot turn

example : vehicles



 Code : only simple operations:  pot(i) = e1*w1+e2*w2+e3*w3

example : vehicles



 Complete architecture:

example : vehicles



 enhancement : 

example : vehicles



 only 2 neurons 
 topology matters
 No “if”, just a vector product : light calculation.
 No notion of obstacle

 behaviors can be stacked with more sensors :
− obstacle avoidance and phototaxis  =
− stacking circuits

example : vehicles



example : vehicles



example : vehicles



fear

example : vehicles



fear                                 angry       

example : vehicles



fear                                 angry                                                                love    

example : vehicles



fear                                 angry                                                                love    exploration

example : vehicles



Learning



 nervous circuits : also crucial for memory (no dedicated centralised 
structure).

 Observation : an informal experience is correlated to measurable neuro-
chemical and neuro-anatomical modifications in the brain

 Physiological modification of  synapses:
− Pré-synaptic : increase release of neurotransmitters
− Post-synaptic : increase sensitiveness of the receptive membrane

 Structural modifications :
− the frequent “use” of a circuit induce an increase of the synaptic 

contacts

Learning



Hebb Rule [Hebb 49] :

“when cell A excites by its axon cell B and, in a repeated and 
persistent manner, it triggers impulsion of B, a process of 
metabolic change happens in one or two of both cells, driving 
to an significant increase of the efficiency of A to generate an 
impulsion in B, among the other cells”

Learning



A B
WBA

Learning

Hebb Rule [Hebb 49] :



A B
WBA

Learning

Hebb Rule [Hebb 49] :

The sole A activity is not enough  to induce B activation

A*WBA < θB
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Hebb Rule [Hebb 49] :



A B
WBA

Learning

Hebb Rule [Hebb 49] :

For some reason... coactivation of A and B...



A B
WBA

Learning

Hebb Rule [Hebb 49] :

increase of the connection WBA 
For some reason... coactivation of A and B...repeatedly 



A B
WBA

Learning

Hebb Rule [Hebb 49] :



A B
WBA

Learning

Hebb Rule [Hebb 49] :

The sole A activity is now enough ...



A B
WBA

Learning

Hebb Rule [Hebb 49] :

The sole A activity is not enough  to overshoot B threashold

A*WBA > θB  



 Hebb rule

Wij (t+1) = wij (t) + eps.Yj.Yi

i.e :

∆Wij = eps.Yj.Yi

with : 

eps : learning speed

Learning



Learning
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- perceptron

- simple rule

- Widrow Hoff rule

- limitations
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- brain mechanisms
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- WTA

- Self Organizing Maps

- Kohonen maps

- K-means (analogy)

- Let’s put it all together

- ART



Supervised learning

- goal : 

- make the network learn to categorize inputs

- pattern recognition

- class separation

- method : 

- train the network from different inputs

- test the network generalization 
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- goal : 

- make the network learn to categorize inputs

- pattern recognition

- class separation

- method : 

- train the network from different inputs

- test the network generalization 



The network will learn

- structural changes

- modification of Wij in order to obtain the 
correct output

- the expected result is a correct 
categorization

- learning is iterative: not too fast, not too 
slow

- learning rate epsilon

- test the generalization

Supervised learning



How to guide the learning ?

- fundamental notion of error

- supervised : we expect a given answer

- at each time step, we calculate the error

- error : (desired ouput - output)

- while there is an error : we change the 
weights

Supervised learning



Example 

Supervised learning



Example 

Supervised learning

Données
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Datas
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is it 50 ?neural network NO it is70 !

Datas
learning

test 
error !

learning

Supervised learning



Perceptron

Architecture

- As input, the retina : raw numerical 
information

- A first layer of neurons : one-one 
connections with the rétina (normalization 
only)

- A last layer, called decision layer : the output 
of the system.



Perceptron

Architecture

- As input, the retina : raw numerical 
information

- A first layer of neurons : one-one 
connections with the rétina (normalization 
only)

- A last layer, called decision layer : the output 
of the system.

- non-modifiable weight. direct transmission, 
W=1/(raw-max)

- modifiable weights. learning ! 

- Wij= random between [-1/n,1/n]

j

i



Perceptron

Learning : the simple rule

- wij(t+i) = wij(t) + eps.(Yd-Yi).Xj

j

i
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Perceptron

Learning : the simple rule

- wij(t+i) = wij(t) + eps.(Yd-Yi).Yj

j

i

error 



 logical AND

1,5

1

1 1

1

Perceptron



 logical OR

0,5

1

1 1

1

Perceptron



 XOR ?

?

?

? 1

1 ?

Perceptron



 limited to linear separation

  what to ?
− increase the number of layers ad combine the outputs

Perceptron



1 layer 2 layers 3 layers

…

Perceptron

 limited to linear separation

  what to ?
− increase the number of layers ad combine the outputs


